skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gruhl, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Evolutionary transitions of organisms between environments have long fascinated biologists, but attention has been focused almost exclusively on free-living organisms and challenges to achieve such transitions. This bias requires addressing because parasites are a major component of biodiversity. We address this imbalance by focusing on transitions of parasitic animals between marine and freshwater environments. We highlight parasite traits and processes that may influence transition likelihood (e.g., transmission mode, life cycle, host use), and consider mechanisms and directions of transitions. Evidence for transitions in deep time and at present are described, and transitions in our changing world are considered. We propose that environmental transitions may be facilitated for endoparasites because hosts reduce exposure to physiologically challenging environments and argue that adoption of an endoparasitic lifestyle entails an equivalent transitioning process as organisms switch from living in one environment (e.g., freshwater, seawater, or air) to living symbiotically within hosts. Environmental transitions of parasites have repeatedly resulted in novel forms and diversification, contributing to the tree of life. Recognizing the potential processes underlying present-day and future environmental transitions is crucial in view of our changing world and the current biodiversity crisis. 
    more » « less